Abstract
AbstractA uniform space X is said to be uniformly locally connected if given any entourage U there exists an entourage V ⊂ U such that V[x] is connected for each x ∈ X. It is said to have property S if given any entourage U, X can be written as a finite union of connected sets each of which is U-small.Based on these two uniform connection properties, another proof is given of the following well known result in the theory of locally connected spaces: The Stone-Čech compactification βX is locally connected if and only if X is locally connected and pseudocompact.
Publisher
Canadian Mathematical Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Local Connectedness Made Uniform;Papers in Honour of Bernhard Banaschewski;2000
2. Locally connected compactifications;Topology and its Applications;1991-06
3. Rings of Continuous Functions from an Algebraic Point of View;Ordered Algebraic Structures;1989