Abstract
AbstractThe Pólya-Vinogradov inequality states that for any non-principal character x modulo q and any N ≧ 1,where c is an absolute constant. We show that (*) holds with c = 2/(3π2) + o(1) in the case x is primitive and x (— 1) =1 with c = 1/(3π) + o(l) in the case x is primitive and x(— 1) = — 1- This improves by a factor 2/3 the previously best-known values for these constants.
Publisher
Canadian Mathematical Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献