Abstract
In 1944 Whitney proved that any differentiable n-manifold (n ≧ 2) can be (differentiably) immersed in R2n–1[15] and embedded in R2n [14]. Whitney's results are best possible when n = 2r. (One uses a simple argument involving the dual Stiefel-Whitney classes of real projective space Pn. See [9, pp. 14, 15].) However, there is a widely known conjecture that any R-manifold (n ≧ 2) immerses in R2n–α(n) and embeds in R2n–α(n)+1. Here, α(n) denotes the number of ones in the binary expansion of n. We prove (Theorem 5.1) that every compact manifold is cobordant to a manifold that immerses in (2n – α(n))-space and embeds in (2n – α(n) + 1)-space. (See § 1 for the definition of cobordant manifolds.) It is well known that if the conjecture were true it would be the best possible result.
Publisher
Canadian Mathematical Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献