Author:
Lambie-Hanson Chris,Rinot Assaf
Abstract
AbstractWe derive a forcing axiom from the conjunction of square and diamond, and present a few applications, primary among them being the existence of super-Souslin trees. It follows that for every uncountable cardinal$\unicode[STIX]{x1D706}$, if$\unicode[STIX]{x1D706}^{++}$is not a Mahlo cardinal in Gödel’s constructible universe, then$2^{\unicode[STIX]{x1D706}}=\unicode[STIX]{x1D706}^{+}$entails the existence of a$\unicode[STIX]{x1D706}^{+}$-complete$\unicode[STIX]{x1D706}^{++}$-Souslin tree.
Publisher
Canadian Mathematical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献