Abstract
AbstractLet X be a graph with vertex set V and let A be its adjacency matrix. If E is the matrix representing orthogonal projection onto an eigenspace of A with dimension m, then E is positive semi-definite. Hence it is the Gram matrix of a set of |V| vectors in Rm. We call the convex hull of a such a set of vectors an eigenpolytope of X. The connection between the properties of this polytope and the graph is strongest when X is distance regular and, in this case, it is most natural to consider the eigenpolytope associated to the second largest eigenvalue of A. The main result of this paper is the characterisation of those distance regular graphs X for which the 1-skeleton of this eigenpolytope is isomorphic to X.
Publisher
Canadian Mathematical Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献