Abstract
AbstractThe notion of decompositon class in a semisimple Lie algebra is a common generalization of nilpotent orbits and the set of regular semisimple elements.We prove that the closure of a decomposition class has many properties in common with nilpotent varieties, e.g., its normalization has rational singularities.The famous Grothendieck simultaneous resolution is related to the decomposition class of regular semisimple elements. We study the properties of the analogous commutative diagrams associated to an arbitrary decomposition class.
Publisher
Canadian Mathematical Society
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献