Abstract
The purpose of this note is to generalize a result of Gulliksen, Ribenboim and Viswanathan which characterized local group rings when both the ring and the group are commutative.We assume throughout that all rings are associative with identity. If R is a ring we call R local if R/J(R) is a division ring where J(R) denotes the Jacobson radical of R. It is well known that R is local if and only if each element of R\J(R) is a unit. We need the following.
Publisher
Canadian Mathematical Society
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献