Author:
Binding P. A.,Hoskins W. D.,Ponzo P. J.
Abstract
We consider the problem of determining the best possible bounds on the eigenvalues of an nth order positive definite matrix B, when the determinant (D) and trace (T) are given. A large variety of bounds on the eigenvalues are known when different information concerning B is available (see, for example, [1], [2]). Since D and T simply provide the geometric mean and arithmetic mean of the positive, real eigenvalues of B, the solution to the problem involves certain inequalities satisfied by these means (see [3] for such inequalities in a more general setting). A related problem in which the largest and smallest eigenvalue are known, and inequalities involving D and T are obtained, is described in [4].
Publisher
Canadian Mathematical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献