Author:
Anastassiou S.,Chrysikos I.
Abstract
For any flag manifold M=G/K of a compact simple Lie group G we describe non-collapsing ancient invariant solutions of the homogeneous unnormalized Ricci flow. Such solutions emerge from an invariant Einstein metric on M, and by [13] they must develop a Type I singularity in their extinction finite time, and also to the past. To illustrate the situation we engage ourselves with the global study of the dynamical system induced by the unnormalized Ricci flow on any flag manifold M=G/K with second Betti number b2(M) = 1, for a generic initial invariant metric. We describe the corresponding dynamical systems and present non-collapsed ancient solutions, whose α-limit set consists of fixed points at infinity of MG. Based on the Poincaré compactification method, we show that these fixed points correspond to invariant Einstein metrics and we study their stability properties, illuminating thus the structure of the system’s phase space.
Publisher
Universidad de Extremadura - Servicio de Publicaciones
Subject
Geometry and Topology,Mathematics (miscellaneous),Algebra and Number Theory,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献