Exact solution for capillary waves on the surface of a liquid of finite depth

Author:

Alimov M. M.1

Affiliation:

1. Kazan Federal University

Abstract

Using the Schwartz function method, we have obtained a new exact solution for the problem of stationary capillary waves of finite amplitude on the surface of a liquid that has a finite depth. The reliability of the solution was confirmed by the results of numerical verification of the main boundary equation. The obtained solution of the problem is general in the sense that for any Weber number one can find the corresponding wave configuration. Parametric analysis showed a nonmonotonic dependence of the wave-length and its amplitude on the Weber number. The fact that the problem has one more branch of the solution (the trivial solution) indicates the possibility of the existence of other branches. The Schwartz function method cannot guarantee finding all solutions of the problem even from the specified class of functions. Therefore, the question of reproducing the known exact solution of W. Kimmersley for this problem and its reliability remains open. Note that for the parameter ß included in the main boundary equation, W. Kimmersley preliminarily laid down assumption ß = 1. The found exact solution has the property that ß > 1 and cannot coincide with W. Kimmersley’s solution.

Publisher

Kazan Federal University

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference11 articles.

1. Kinnersley W. Exact large amplitude capillary waves on sheets of fluid, J. Fluid Mech. 77 (2), 229–241 (1976).

2. Zubarev N.M., Zubareva O.V. Ravnovesnye konfiguratsii zaryazhennoi poverkhnosti provodyashchei zhidkosti pri konechnom mezhelektrodnom rasstoyanii, Pis'ma v ZhTF 30 (21), 39–43 (2004).

3. Crowdy D.G. Exact solutions for steady capillary waves on a fluid annulus, J. Nonlinear Sci. 9, 615–640 (1999).

4. Kufarev P.P. Reshenie zadachi o konture neftenosnosti dlya kruga, DAN SSSR 60 (8), 1333–1334 (1948). [5] Howison S.D. Complex variable methods in Hele–Shaw moving boundary problems, Europ. J. Appl. Math. 3 (3), 209–224 (1992).

5. Alimov M.M. Tochnoe reshenie zadachi Masketa–Leibenzona dlya rastushchego ellipticheskogo puzyrya, Izv. RAN. Mekhan. zhidkosti i gaza (5), 86–98 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3