Affiliation:
1. Kazan Federal University
Abstract
Let τ be a faithful normal semifinite trace on a von Neumann algebra M. We investigate the block projection operator Pn (n ≥ 2) in the ∗-algebra S(M, τ ) of all τ -measurable operators. We show that A ≤ nPn(A) for any operator A ∈ S(M, τ )+. If an operator A ∈ S(M, τ )+ is invertible in S(M, τ ) then Pn(A) is invertible in S(M, τ ). Consider A = A∗ ∈ S(M, τ ). Then (i) if Pn(A) ≤ A (or if Pn(A) ≥ A) then Pn(A) = A; (ii) Pn(A) = A if and only if PkA = APk for all k = 1, . . . , n; (iii) if A, n(A) are projections then n(A) = A. We obtain 4 corollaries. We also refined and reinforced one example from the paper “A. Bikchentaev, F. Sukochev, Inequalities for the block projection operators, J. Funct. Anal. 280 (7), article 108851, 18 p. (2021)”.
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference9 articles.
1. Bikchentaev A., Sukochev F. Inequalities for the block projection operators, J. Funct. Anal. 280 (7), article 108851, 18 p. (2021).
2. Gokhberg I.Ts., Krein M.G. Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gil'bertovom prostranstve (Nauka, M., 1965).
3. Bikchentaev A.M. Operator blochnogo proektirovaniya v normirovannykh ideal'nykh prostranstvakh izmerimykh operatorov, Izv. vuzov. Matem. (2), 86-91 (2012).
4. Bikchentaev A. Trace inequalities for Rickart C∗-algebras, Positivity 25 (5), 1943-1957 (2021).
5. Takesaki M. Theory of operator algebras. I. Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry, 5 (Springer-Verlag, Berlin, 2002).