On a priori estimate of periodic solutions of a system of nonlinear ordinary differential equations of the second order

Author:

Mukhamadiev E.1,Naimov A. N.1

Affiliation:

1. Vologda State University

Abstract

The question of a priori estimation of periodic solutions for a system of non-linear ordinary differential equations of the second order with a distinguished main positively homogeneous part is investigated. In this question, the well-known methods for deriving an a priori estimation of periodic solutions for similar systems of first-order ordinary differential equations are not directly applicable.Combining these methods with the idea of qualitative research of singularly perturbed ordinary differential equations, conditions are found that provide an a priori estimation of periodic solutions for the  system of second-order equations.The conditions for the a priori estimation are formulated in terms of the properties of the main positively homogeneous part of the system of equations. The existence of periodic solutions is proved to be invariant under a continuous change of the main positively homogeneous part and the conditions of a priori estimation  are preserved. Based on the results obtained, in the future, it is possible to investigate the existence of periodic solutions.

Publisher

Kazan Federal University

Reference10 articles.

1. Krasnosel'skii M.A., Zabreiko P.P. Geometricheskie metody nelineinogo analiza (Nauka, M., 1975).

2. Mukhamadiev E. K teorii periodicheskikh reshenii sistem obyknovennykh differentsial'nykh uravnenii, DAN SSSR 194 (3), 510–513 (1970).

3. Mukhamadiev E., Naimov A. N. Kriterii sushchestvovaniya periodicheskikh i ogranichennykh reshenii dlya trekhmernykh sistem differentsial'nykh uravnenii, Tr. IMM UrO RAN 27 (1), 157–172 (2021).

4. Mukhamadiev E., Naimov A.N. Ob apriornoi otsenke i sushchestvovanii periodicheskikh reshenii dlya odnogo klassa sistem nelineinykh obyknovennykh differentsial'nykh uravnenii, Izv. vuzov. Matem. (4), 37–48 (2022).

5. Klokov Yu.A. Apriornye otsenki reshenii obyknovennykh differentsial'nykh uravnenii, Differents. uravneniya 15 (10), 1766–1773 (1979).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3