Variation and λ-jump inequalities on H<sup>p</sup> spaces

Author:

Demir S.1

Affiliation:

1. Agri Ibrahim Cecen University

Abstract

Let \phi \in S with \int \phi (x) dx = 1, and define \phi t(x) = 1 tn \phi \Bigl( x t \Bigr) , and denote the function family \{ \phi t\ast f(x)\} t>0 by \Phi \ast f(x). Let \scrJ be a subset of \BbbR (or more generally an ordered index set), and suppose that there exists a constant C1 such that \sum t\in \scrJ | \^\phi t(x)| 2 < C1 for all x \in \BbbR n. Then i) There exists a constant C2 > 0 such that \| V2(\Phi \ast f)\| Lp \leq C2\| f\| Hp, n n + 1 < p \leq 1 for all f \in Hp(\BbbR n), n n + 1 < p \leq 1. ii) The \lambda -jump operator N\lambda (\Phi \ast f) satisfies \| \lambda [N\lambda (\Phi \ast f)]1/2\| Lp \leq C3\| f\| Hp, n n + 1 < p \leq 1, uniformly in \lambda > 0 for some constant C3 > 0.

Publisher

Kazan Federal University

Reference8 articles.

1. Bourgain J. Pointwise ergodic theorems for arithmetic sets, Publ. Math. Inst. Hautes ´Etudes Sci. 69, 5–41 (1989).

2. Demir S. Hp Spaces and Inequalities in Ergodic Theory, Ph.D Thesis (Univ. Illinois at Urbana-Champaign, Usa, May 1999).

3. Demir S. Inequalities for the variation operator, Bull. Hellenic Math. Soc. 64, 92–97 (2020).

4. Demir S. Variational inequalities for the differences of averages over lacunary sequences, New York J. Math. 28, 1099–1111 (2022).

5. Jones R.L., Seeger A., Wright J. Strong variational and jump inequalities in harmonic analysis, Trans. AMS 360 (12), 6711–6742 (2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3