The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis

Author:

Shabalin P. L.1,Faizov R. R.1

Affiliation:

1. Kazan State University of Architecture and Engineering

Abstract

   This article analyzes the inhomogeneous Hilbert boundary value problem for an upper half-plane with the finite index and boundary condition on the real axis for one generalized Cauchy–Riemann equation with a singular point on the real axis. A structural formula was obtained for the general solution of this equation under restrictions leading to an infinite index of the logarithmic order of the accompanying Hilbert boundary value problem for analytic functions. This formula and the solvability results of the Hilbert problem in the theory of analytic functions were applied to solve the set boundary value problem.

Publisher

Kazan Federal University

Reference26 articles.

1. Vekua I.N. Obobshchennye analiticheskie funktsii [Generalized Analytic Functions]. Moscow, Nauka, 1988. 512 p. (In Russian)

2. Timergaliev S.N. On existence of solutions of nonlinear equilibrium problems on shallow inhomogeneous anisotropic shells of the Timoshenko type. Russ. Math., 2019, vol. 63, no. 8, pp. 38–53. doi: 10.3103/S1066369X1908005X.

3. Timergaliev S.N. On the solvability of nonlinear boundary value problems for the system of differential equations of equilibrium of shallow anisotropic Timoshenko-type shells with free edges. Differ. Equations, 2021, vol. 57, no. 4, pp. 488–506. doi: 10.1134/s0012266121040066.

4. Mikhailov L.G. Novye klassy osobykh integral’nykh uravnenii i ego primeneniya k differentsial’nym uravneniyam s singulyarnymi koeffitsientami [New Classes of Special Integral Equations and Their Application to Differential Equations with Singular Coefficients]. Dushanbe, Akad. Nauk Tadzh. SSR, 1963. 183 p. (In Russian)

5. Rajabov N.R. Integral’nye predstavlenie i granichnye zadachi dlya nekotorykh differentsial’nykh uravnenii s singulyarnoi liniei ili s singulyarnymi poverkhnostyami Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces]. Pt. I. Dushanbe, TGU, 1980. 126 p. (In Russian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3