Varying parameterization of an ellipsoidal thin shell with FEM-based implementation

Author:

Klochkov Yu. V.1,Nikolaev A. P.1,Vakhnina O. V.1,Sobolevskaya T. A.1,Dzhabrailov A. Sh.1,Klochkov M. Yu.2

Affiliation:

1. Volgograd State Agrarian University

2. Volgograd State Technical University

Abstract

This article describes an algorithm developed for the finite element analysis of the stressstrain state of a shell that takes the shape of a triaxial ellipsoid with varying parameterization of its mid-surface. A quadrangular fragment of the shell mid-surface with nodal unknowns in the form of displacements and their first derivatives along the curvilinear coordinates was used as the discretization element.When approximating the displacements through the nodal values, two variants were considered. In the first variant, the known approximating functions were applied to each component of the displacement vector of the internal point of the finite element through the nodal values of the same component. In the second variant, the approximating expressions were used directly for the expression of the displacement vector of the internal point of the finite element through the vector unknowns of the nodal points. After the coordinate transformations, each component of the displacement vector of the internal point of the finite element was expressed through the nodal values of all components of the nodal unknowns. The approximating expressions of the required displacements of the internal point of the finite element also include the parameters of the curvilinear coordinate system used in the calculations.The high efficiency of the developed algorithm was confirmed by the results of the numerical experiments.

Publisher

Kazan Federal University

Subject

Applied Mathematics,General Physics and Astronomy,General Mathematics,Modeling and Simulation

Reference37 articles.

1. Novozhilov V.V. Teoriya tonkikh obolochek [Thin Shell Theory]. St. Petersburg, Izd. S.-Peterb. Univ., 1951. 334 p. (In Russian)

2. Rickards R.B. Metod konechnykh elementov v teorii obolochek i plastin [Finite Element Method in Shell and Plate Theory]. Riga, Zinatne, 1988. 283 p. (In Russian)

3. Kabrits S.A., Mikhailovskii E.I., Tovstik P.E., Chernykh K.F., Shamina V.A. Obshchaya nelineinaya teoriya uprugikh obolochek [General Nonlinear Theory of Elastic Shells]. St. Petersburg, Izd. S.-Peterb. Univ., 2002. 388 p. (In Russian)

4. Pikul’ V.V. Mekhanika obolochek [Mechanics of Shells]. Vladivostok, Dal’nauka, 2009. 535 p. (In Russian)

5. Storozhuk E.A., Maksimyuk V.A., Chernyshenko I.S. Nonlinear elastic state of a composite cylindrical shell with a rectangular hole. Int. Appl. Mech., 2019, vol. 55, no. 5, pp. 504–514. doi: 10.1007/s10778-019-00972-0.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3