Calculation of Potential Barriers and Blocking Temperatures of Small Pseudo–Single-DomainParticles by Micromagnetism Methods

Author:

Shcherbakov V. P.1,Sycheva N. K.1

Affiliation:

1. Borok Geophysical Observatory, Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences

Abstract

Numerical simulation of the process of remagnetization of small pseudo–single-domain magnetite particles (Тc = 580°С) was performed. The particles are cylindrical in shape, with a height h of 60–350 nm and a height-to-diameter ratio of 1.29. This geometry enables preferential anisotropy of the shape, causing the magnetic moment of the particle to align along the cylinder’s axis in a stable state. As the size increases, the domain structure shifts from the single-domain state (60 nm) to the flower mode (h = 70–85 nm), and then to a vortex structure. Particles in the range of h = 75–250 nm are remagnetized through a vortex state, with the axis aligned along their diameter. In the range of h = 300–350 nm, at the top of the potential barrier, the domain structure transforms from a single vortex to a multi-vortex configuration. The blocking temperatures Tb of the particles vary from 520 to 580°C, while the dependence Тb(h) is non-monotonic and manifests a “pit” at h = 90–140 nm. At the same time, at h = 300–350 nm, Tb values differ from by Тс  no more than 1°C. At h = 100 nm, the ratio of magnetic energy in the external field B of the order of the earth to thermal energy at T = Tb reaches 1. This suggests a strong nonlinearity of the TRM(B) dependence even in such small fields and particle sizes. The results obtained highlight the need to revise the existing micromagnetic models by taking into account the specific shape and deficiency of the crystal structure of particles in order to bring them in line with the properties of actual ferrimagnets present in rocks.

Publisher

Kazan Federal University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3