Affiliation:
1. National Universitet of Uzbekistan
Abstract
We prove that every coinfinite set is a characteristic transversal of a suitably computably separable equivalence relation, over which only locally finite, locally finite separable and finitely approximable unary algebras are represented. Similar properties for uniformly computable separable equivalences are considered.
Reference27 articles.
1. Yu.L. Ershov, Theory of numberings, Nauka, M., 1977 [in Russian.].
2. Yu. L. Ershov, Theory of numberings, in: E.R. Griffor (ed.), Handbook of computability theory (Stud. Logic Found. Math., 140), Amsterdam, Elsevier, 1999, 473–503. DOI: https://doi.org/10.1016/S0049-237X(99)80030-5
3. R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in mathematical logic. Springer-Verlag, Berlin, Heidelberg, New York, etc., 1987. URL: https://link.springer.com/book/9783540666813
4. S.S. Goncharov, Yu.L. Ershov, Constructive Models, Siberian School of Algebra and Logic. Consultants Bureau, New York, 2000.
5. P.M. Cohn, Universal algebra, MAIA 6, D. Reidel Publishing Co., Dordrecht–Boston, Mass., 1981. DOI: https://doi.org/10.1007/978-94-009-8399-1