Evidence of Osteogenic Regulation in Calcific Porcine Aortic Valves

Author:

Lu Fanglin,Wu Hao,Bai Yifan,Gong Dejun,Xia Cuiping,Li Qin,Lu Fanglin,Xu Zhiyun

Abstract

Background: Chemically cross-linked animal tissues, such as porcine aortic valves (PAVs) have many documented advantages over mechanical valves. However, calcification is the major underlying pathologic process that results in bioprosthetic valve failure. Recently, several reports described the expression of noncollagenous bone matrix proteins in bioprosthetic valves and suggested an actively regulated process of tissue repair. Methods: Thirty-one explanted PAVs with evidence of calcification were collected and examined for the protein expression implicated in myofibroblast activation, osteoblast differentiation, and bone matrix deposition by using immunohistochemistry. Results: The mean duration that PAVs were implanted was 11.5 ± 5.6 years, ranging from 12 months to 28 years. Pearson correlation analysis showed a significant relationship between the duration and valvular calcification (r = 0.3818, P = .034). The number of vimentin-positive mesenchymal cells in explanted PAVs was significantly lower than that of unused PAVs (P < .01). However, increased expression of α-smooth muscle actin (α-SMA) (P < .01), proliferating cell nuclear antigen (PCNA, P < .01), Cbfa1/Runx2 (P < .01), osterix (P = .0126), bone sialoprotein (BSP, P < .01), osteocalcin (P < .01), and osteopontin (P < .01) was found in explanted PAVs. Immunohistochemical staining of alkaline phosphatase (ALP) and osteocalcin was negative in the unused PAVs. In explanted PAVs, the expression level of these 2 proteins was also significantly increased. Conclusions: Our results support the view that PAV calcification is an actively regulated process with osteogenic signaling activation.

Publisher

Carden Jennings Publishing Co.

Subject

Cardiology and Cardiovascular Medicine,Surgery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3