Results of a Decellularized Porcine Heart Valve Implanted into the Juvenile Sheep Model

Author:

Dohmen P. M.,Costa F. da,Lopes S. V.,Yoshi S.,Souza F. P. da,Vilani R.,Da Costa M. B.,Konertz W.

Abstract

Objective: This study was performed to evaluate the possibility of creating a glutaraldehyde-free porcine xenograft to improve long-term durability. Methods: A decellularized porcine pulmonary valve was implanted into the right ventricular outflow tract of 7 juvenile sheep. Valves were explanted after 3 months (n = 4) and 6 months (n = 3). Evaluation was performed by gross examination, radiography, histology (hematoxylin-eosin and Sirius red staining), and immunohistochemistry. Quantitative determination of calcium content was investigated by atomic absorption spectrometry. Results: All animals showed fast recovery without complications. At explantation, all decellularized valves showed smooth and pliable leaflets without evidence of thrombosis. The valve wall was also smooth and pliable without hardness. Light microscopy showed a monolayer of host endothelial cells covering the inner surface of the heart valves and repopulation of host fibroblasts into the deeper layers. Sirius red staining enabled visualization of the production of new collagen. Radiographic results showed an absence of calcification, confirmed by the low calcium levels (1.08 0.28 m g/g and 0.73 0.31 m g/g at 3 and 6 months, respectively) revealed by atomic absorption spectrometry. Conclusions: The results with the juvenile sheep model showed that decellularized heart valves are recellularized in vivo. Host endothelial cells form a monolayer on the inner surface of the valve matrix. Furthermore, host fibroblasts repopulate the valve matrix and produce collagen; thus, a remodeling potential can be expected.

Publisher

Carden Jennings Publishing Co.

Subject

Cardiology and Cardiovascular Medicine,Surgery,General Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3