Adult Bone Marrow-Derived Mesenchymal Stem Cells Seeded on Tissue-Engineered Cardiac Patch Contribute to Myocardial Scar Remodeling and Enhance Revascularization in a Rabbit Model of Chronic Myocardial Infarction

Author:

Zhang Jue,Wu Mingjiang,Zhang Xiaoqiang,Yang Mingli,Xiong Tingwang,Zhi Wei

Abstract

Background: Although the transplantation of tissue-engineered cardiac patches with adult bone marrow-derived mesenchymal stem cells (MSCs) can enhance cardiac function after acute or chronic myocardial infarction (MI), the recovery mechanism remains controversial. This experiment aimed to investigate the outcome measurements of MSCs within a tissue-engineered cardiac patch in a rabbit chronic MI model. Methods: This experiment was divided into four groups: left anterior descending artery (LAD) sham-operation group (N = 7), sham-transplantation (control, N = 7), non-seeded patch group (N = 7), and MSCs-seeded patch group (N = 6). PKH26 and 5-Bromo-2’-deoxyuridine (BrdU) labeled MSCs-seeded or non-seeded patches were transplanted onto chronically infarct rabbit hearts. Cardiac function was evaluated by cardiac hemodynamics. H&E staining was performed to count the number of vessels in the infarcted area. Masson staining was used to observe cardiac fiber formation and to measure scar thickness. Results: Four weeks after transplantation, a remarkable improvement in cardiac functionality could be distinctly observed, which was most significant in the MSCs-seeded patch group. Moreover, labeled cells were detected in the myocardial scar, with most of them differentiated into myofibroblasts, some into smooth muscle cells, and only a few into cardiomyocytes in the MSCs-seeded patch group. We also observed significant revascularization in the infarct area implanted in either MSCs-seeded or non-seeded patches. In addition, there were significantly greater numbers of microvessels in the MSCs-seeded patch group than in the non-seeded patch group.

Publisher

Forum Multimedia Publishing LLC

Subject

Cardiology and Cardiovascular Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3