Reduction and Capture of Green House Gas Emissions from an Oil Refinery with Amine/Piperazine- and Amine/Sulfolane-Based Solvents

Author:

Al Ghamdi Ahmed

Abstract

This paper focuses on the emissions of greenhouse gases (GHG) from petroleum/petrochemical refineries which are predominantly in the form of CO2. A refinery located in the Gulf is selected and methodologies to reduce and capture CO2 are presented. The refinery emits approximately 775 tonnes/year CO2. A sound energy policy, robust process control, careful operation of motor driven equipment and process heaters could lead to appreciable reduction of these emissions. After reduction, the capture of remaining CO2 emissions with PZ (piperazine) and sulfolane-based smine solvents is simulated and optimized to get minimum re-boiler duty in the stripper. The process simulator ASPEN software is used for simulations. The optimization results indicate that PZ-based amine solvent performs better than sulfolane-based amine when H2S in the flue gas is in small amounts. The re-boiler duty seems to depend upon the temperature of the stripper feed. It is proposed that heat exchanger design be improved that exchanges heat between lean and rich amines.

Publisher

Kaunas University of Technology (KTU)

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3