Development of Determination Methodology of Electrical Conductivity of Titanium-based Composites

Author:

GRICIUS Donatas,KANDROTAITĖ JANUTIENĖ Rasa,MAŽEIKA Darius,ŠERTVYTIS Rolandas,SYZONENKO Olha,TORPAKOV Andrii

Abstract

The Ti-based metal matrix composite samples are novel, fabricated by using high voltage electric discharge and spark plasma sintering processes. They have potential usage in the aviation industry. A research that allowed measuring an electrical conductivity of Ti-based composites was performed. A collinear four-point probe method was chosen for measurement of electrical conductivity. Needle-like probes were used to contact the tested sample. Other aspects of the measurement setup are discussed and selected according to relevant literature. A simulation was performed using COMSOL software to validate the measurement method. Furthermore, a simulation performed for contact force of the probes was performed. A 3D model of the measurement tool was created and designed. The measurement setup was tested and validated by using a copper sample. electrical resistance of Ti-based composite samples was measured, and electrical conductivity was calculated. Furthermore, samples were measured at different temperatures and resistivity dependence to temperature was presented. Experimental results are compared to similar research results.

Publisher

Kaunas University of Technology (KTU)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3