The investigation of a unbalanced barrel pitching system’s characteristics degradation and compensation under gradual erosion behavior

Author:

CHU Yuanbo,XIA Yunxia

Abstract

The unbalanced barrel pitching system is a typical electro-hydraulic coupling servo control system, the performance of which determines the response speed and hit probability of vehicle mounted weapon equipment. However, in the actual service process, its core component, the high precision jet pipe servo valve, will produce the gradual erosion of the pilot stage’s receivers and the power stage’s throttling edges, which will induce the performance degradation of the unbalanced barrel pitching system, and finally greatly reduce the performance of barrel weapons. Therefore, a pressure and position double loop state space model of unbalanced barrel pitching system including the core parameters of performance degradation is established. The erosion behavior mechanism model of jet pipe servo valve is constructed, and the performance degradation characteristics of the unbalanced barrel pitching control system under the condition of erosion are further analyzed. Finally, aiming at the double loop structure of internal pressure loop and external position loop, the RBF Network Adaptive Robust Sliding Mode-Proportional Integral Derivative two-stage controller of barrel system is designed, based on which the experimental platform of unbalanced barrel pitching control is built. The experimental results are in good agreement with the theoretical results, so the proposed control method can effectively suppress the degradation of internal structural parameters induced by erosion, that is, it can better compensate the performance degradation of barrel pitching system induced by gradual erosion behavior. 

Publisher

Kaunas University of Technology (KTU)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3