Mechanical systems of precise robots with vibrodrives, the vibrating mass of the exciting force of which performs impacts into deformable support and direction of the exciting force coincides with the line of relative motion of the system

Author:

Ragulskis Kazimieras

Abstract

Manipulator consisting from one sided self stopping mechanism and two masses which interact through an elastic – dissipative member is investigated. The drive of the manipulator is the generator of mechanical vibrations. With such elements the system is nonlinear. A separate case is investigated when static positions of equilibrium of both masses are located in one point. Because of this spectrums of eigenfrequencies are linear and infinite. All those facts mean that the operation of the manipulator is optimal. Fast development of robots gives rise to the investigations of increasing intensity creating various types of robots especially in the area of high precision. Mechanical systems of robot must perform laws and trajectories of motion, positioning in space with highest possible precision as well as ensure dynamicity of highest possible stability. Those aims are achieved in the presented paper by creating a structure of the best design, based on vibroimpacts as well as by choosing corresponding nonlinear parameters of the system. The investigation is performed by analytical – numerical method. The obtained results enable to create mechanical systems for precise robots.

Publisher

Kaunas University of Technology (KTU)

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3