Transient Numerical Simulation of a Large-Sized Cement-Mill Fan for Performance Prediction

Author:

Amour Aissa,MENASRI Noureddine

Abstract

In many engineering applications, particle-laden flows are a necessary part of the conveying process, but in other situations, they could have unintended consequences that must be avoided. As a part of the exhausting process, the induced cement-mill fan (FN-280) installed in a cement plant operates under critical conditions with the presence of high content of cement particles. Over time the dragged solid particles erode the rotating and stationary parts of the fan causing their damage. If one decides on a numerical approach to predict regions most prone to erosion and track the solid particle's trajectory within the fan domain by assuming a one-way coupling regime between the continuous and discrete solid phases, a deep insight into the flows physics within the centrifugal fan is required. With this aim, a three-dimensional numerical approach for the hole unsteady flow in a large-sized industrial centrifugal fan has been carried out in this paper. A fully resolved sliding mesh approach was employed to take into account the unsteady interaction between the impeller and the discharge volute. Based on the characteristic performance curves, the numerical results of the unsteady simulation at four operating conditions are validated with the experimental data. The comparisons reveal that the results of the unsteady simulation are in an acceptable level of agreement with the experiment, demonstrating the validity of the modelling approach adopted in this study.

Publisher

Kaunas University of Technology (KTU)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3