Capacitor Allocation Using Multiobjective Water Cycle Algorithm and Fuzzy Logic

Author:

Mohamed El-Saeed Menna Allah E.ORCID,Abdel-Gwaad Amal F.ORCID,Farahat Mohamed A.ORCID

Abstract

Radial distribution systems are susceptible to a lack of voltage profile and increase system losses, particularly at the distant ends of the distribution feeder. This manuscript proposes an approach to solve the optimal capacitor placement problem in radial distribution networks to minimize system losses, improve the voltage profile of all buses, promote total voltage stability, and improve net savings. The optimal capacitor placement problem is solved in two stages. Firstly, normalized loss sensitivity factor and voltage magnitude are used as inputs to build fuzzy expert rules to arrange the most candidate buses for capacitor placement. Secondly, a multiobjective water cycle algorithm is applied to determine the optimal sizes and locations of capacitors within the predefined search space using fuzzy expert rules. The multiobjective function is formulated with operational constraints considering fixed and switched capacitors. To validate the effectiveness of this methodology, it is demonstrated on IEEE 33 and IEEE 94-bus radial distribution networks. Clearly, the findings show the improvement in the voltage profile and static voltage stability, the significant reduction in system losses, as well as the enhancement in overall savings. Furthermore, a comprehensive evaluation is also carried out by comparing the numerical results with other methods such as interior point algorithm, a combination fuzzy real coded genetic algorithm method, water cycle algorithm for IEEE 33-bus system and artificial bee colony algorithm for IEEE 94-bus system which prove the viability and effectiveness of the proposed methodology.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3