Control of Acoustic Extinguisher with Deep Neural Networks for Fire Detection

Author:

Wilk-Jakubowski Jacek LukaszORCID,Stawczyk PawelORCID,Ivanov Stefan,Stankov Stanko

Abstract

The search for fast and environmentally safe methods of fighting fires has been a particularly important topic in recent years. Many academic centres are conducting research on the use of Deep Neural Networks to detect flames. One of the most promising is the acoustic method of extinguishing flames. In theory, an acoustic extinguisher can be applied to extinguish fires of different classes because acoustic waves pass through solids, liquids, and gases. In principle, the technology described in the article can be used to extinguish B- and C-class fires when gases or liquids are burning. Until now, the known studies have been conducted only for low-power acoustic extinguishers. Therefore, there is a need to fill a theoretical and practical gap in this respect (scientific novelty). The result of the activities is the development of new techniques for extinguishing flames with the use of Deep Neural Networks, and then extinguishing flames using a high and very high power loudspeaker applied to the acoustic extinguisher. The main aim of this paper is to present the possibilities of using Deep Neural Networks to detect fires, as well as the results of research on the extinguishing of flames with the use of square waveforms with Amplitude Modulation (AM) for several frequencies, which is also a scientific novelty, including the minimum acoustic power and sound pressure level as a function of a distance from the output of the acoustic system. On this basis, it became possible to determine the minimum power delivered to the extinguisher and the minimum sound pressure level that causes the extinguishing effect at given input parameters.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3