Analysis of Non-Uniform Current Distribution in Multi-Fingered and Low-Voltage-Triggered LVTSCR

Author:

Zhou Zijie,Jin Xiangliang,Wang Yang,Dong Peng,Peng Yan,Luo Jun

Abstract

Laterally Diffused Metal Oxide Semiconductor Silicon-Controlled Rectifier (LDMOS-SCR) is usually used in Electrostatic Discharge (ESD) protection. LDMOS-SCR discharges current by parasitic SCR, but the MOS in it cannot work when parasitic SCR is stabilized. To further enhance the Electrostatic Discharge (ESD) discharging capability of LDMOS-SCR, a novel high failure current LDMOS-SCR with 12 V operation voltage is fabricated and verified in a 0.18-um high-voltage Bipolar-CMOS-DMOS (BCD) process. Compared with conventional LDMOS-SCR, the novel LDMOS-SCR (LDMOS-SCR-R) introduced a heavily doped p-type region, which is located between the heavily doped n-type and p-type regions of Cathode and is connected with the gate. The adding p-well resistance can drop the voltage on the gate, and the gate with p-well resistance also has resistance and capacitance coupling effect. According to the results of the transmission line pulse test (TLP), the voltage applied to the gate by increasing the p-well resistance plays a major role in the device working mechanism. Under the same device size, LDMOS-SCR-R has higher It2 (8.6 A) than conventional LDMOS (2.21 A) or LDMOS-SCR (6.62 A) in TLP results. Compared with LDMOS-SCR, the failure current of LDMOS-SCR-R increases by 30 %, and the FOM of LDMOS-SCR-R increases by 34 %. The response of LDMOS-SCR-R is also faster than that of LDMOS-SCR under larger current conditions. In addition, the phenomenon in TLP results is consistent with simulation results. The proposed LDMOS-SCR-R can effectively increase failure current without affecting the device’s design window, and the additional p-type region will not increase the layout area.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3