A Hybrid Technique for Detecting Extremism in Arabic Social Media Texts

Author:

Alzuabidi Israa Akram,Jamil Layla Safwat,Ahmed Amjed Abbas,Mohd Noah Shahrul Azman,Hasan Mohammad Kamrul

Abstract

Today, social media sites like Twitter provide effective platforms to share opinions and thoughts in public with millions of other users. These opinions shared on such sites influence a large number of people who may easily retweet them and accelerate their spread. Unfortunately, some of these opinions were expressed by extremists who promoted hateful content. Since Arabic is one of the most spoken languages, it is crucial to automate the process of monitoring Arabic content published on social sites. Therefore, this study aims to propose a hybrid technique to detect extremism in Arabic social media texts and articles to monitor the situation of published extremist content. The proposed technique combines the lexicon-based approach with the rough set theory approach. The rough set theory is employed with two approximation strategies: lower approximation and accuracy approximation. The hybrid technique used the rough set theory as a classifier and the lexicon-based as a vector. Furthermore, this study built three types of corpuses (V1, V2, and V3) collected from Twitter. The experimental findings show that among the proposed hybrid methods, the accuracy approximation was superior to the lower approximation with seed vector. It was also revealed that hybrid methods outperformed machine learning techniques in terms of efficiency. Moreover, the study recommends using an accuracy approximation method with seed vector to identify the polarity of the text.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3