A Novel Procedure for Quick Design of Off-Grid PV Water Pumping Systems for Irrigation

Author:

Klimenta Dardan,Lekic Julijana,Arsic Sanela,Tasic Dragan,Krstic Nikola,Radosavljevic Dragana

Abstract

It is known that meteorological variables from meteorological online services can be used for the design of photovoltaic (PV) water pumping systems for irrigation. The software LORENTZ COMPASS in such a manner uses as inputs solar irradiation, precipitation, and ambient temperature collected by the NASA Langley Research Centre over a period of more than 20 years. This paper proposes a novel procedure that uses the sunshine duration, precipitation, and ambient temperature as inputs. These inputs were collected by Weather Online UK during a period of 25 years. The effects of different data collection periods and data availabilities on the design of the PV water pumping system are also analysed and discussed. Along with the meteorological data, the proposed procedure uses as inputs datasheets from manufacturers of pumping systems and PV modules. The procedure is based on the Sivkov model that correlates the global horizontal irradiation with the sunshine duration and the elevation angle of the Sun. A case study, i.e., an existing PV water pumping system designed using LORENTZ COMPASS is used as reference for purposes of comparison and validation of the procedure. The results of the comparison showed a high level of accuracy, and a number of interesting conclusions are drawn from them.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3