Distributionally Robust Collaborative Dispatch of Integrated Energy Systems with DNE Limits Considering Renewable and Contingency Uncertainties

Author:

Ji Xiaotong,Xiao Fan,Liu Dan,Xiong Ping,Zhang Mingnian

Abstract

Collaborative optimisation of system reserves and utilisation of renewable energy is an efficient approach to achieving robust optimal dispatch of integrated energy systems (IES). However, conventional robust dispatch methods are often too conservative and lack the ability to consider uncertainties such as renewable energy and contingency probabilities. To address these limitations, this paper proposes a distributionally robust dispatch model that co-optimises reserves and do-not-exceed (DNE) limits while considering these uncertainties. First, a deterministic optimisation model of IES is established with a minimum operational cost objective and security constraints. Next, a two-stage robust collaborative optimisation framework of IES is built, based on the Wasserstein measure, with random equipment faults represented by an adjustable ambiguity set. Finally, to overcome the computational challenges associated with robust approaches, duality theory and Karush-Kuhn-Tucker (KKT) conditions are used to convert the formulation into a mixed integer linear programming (MILP) model. The Simulation results on the modified IEEE 33-bus system demonstrate the effectiveness of the proposed model and solution methodology.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3