Machine Vision Method for Quantitative Statistics Analysis of Industrial Product Images

Author:

Zan Jie,Hu Yaosheng,Jin Shoufeng,Zhang Ruichao,Stanislawski Rafal

Abstract

To address the problems of unstable accuracy, low efficiency, and subjective influence of manual counting, a machine vision-based method to count the quantity of tobacco shreds is proposed for the first time. In this paper, the complex tobacco shred image is obtained by backlight imaging. The adaptive threshold segmentation method is used to segment tobacco shreds. The pixel area of the tobacco shred area is calculated by connected domain labelling. Second, independent tobacco shreds and adhesive tobacco shreds were identified based on the pixel area, and the quantity of segmented tobacco shreds was counted for the first time. Subsequently, in complex scenarios (such as tobacco shreds adhesive and overlapping), an image is usually obtained by manually drawing the contours of the adhesive and overlapping tobacco shreds on the basis of primary statistics. Finally, different individuals are distinguished, segmentation is completed, and tobacco shred quantity statistics are realised. The experimental results show that the average accuracy is 100.0 % for quantitative statistics of independent tobacco shred images. For tobacco shred images with adhesive and overlapping interference, the minimum accuracy is 90 %, and the accuracy increases with the increase in tobacco shred quantity. Furthermore, the efficiency of the tobacco shred quantity statistics conducted by the method in this paper was only affected by complex scenarios. Compared to artificial processing, the efficiency was increased by more than 100 %. The work in this paper can provide the technical basis for measuring the dimensions of tobacco shreds.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3