Manufacturing of Low-Cost Parabolic Dish Concentrators with Manual Dual-Axis Tracking

Author:

Benzetta Abd Elhalim,Abderrezek Mahfoud,Chettoh Ali,Benbahia Mokhtaria Asma

Abstract

The increased rate of energy crises around the world results in expanding the role of Concentrating Solar Power (CSP) technology for different applications, comprising heating process and power generation applications. The Parabolic Dish Concentrator (PDC) with its large concentration ratio and its modular capacity attracts researchers’ efforts. In this research work, we have designed and developed a PDC with back silvered mirrors as reflector material. Then we have sized the following geometric parameters: the dish diameter, the focal length, the aperture area, the rim angle, the geometric concentration ratio, the receiver material, and the receiver diameter. Furthermore, a dual-axis manual tracking system has been built for this PDC. It should be mentioned that the different components of the PDC have been recycled from a scrap yard to develop a low-cost PDC system. Finally, we have investigated the temperature evolution as a function of time at the focus spot. The maximum temperature obtained is 112 °C for the PDC with mirror. The findings of the study reveal the possibility of building a low-cost solar concentrator with good performance and high quality, only by employing recycled materials, and it could be operated in various applications.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3