Combine Harvester Low Crushing Rate Operation Strategy Research by Using Bayesian Network

Author:

Liu Yehong,Sun Dong,Xu Baoyan,Wang Shumao,Wang Xin

Abstract

As the main harvesting machinery, the combine harvester is often due to improper adjustment of its operating parameters resulting in increased crushing rate and grain waste during the harvesting process. To quickly obtain the working range of key operating parameters under low crushing rate, this study conducted field tests on the relevant parameters affecting the crushing rate and finally selected the travel speed, feed rate, threshing drum speed, concave clearance, and crushing rate as node variables for the construction of the Bayesian network model. Based on the “search-and-score” algorithm, the best network structure can be obtained using the combination of the Akaike Information Criterion (AIC) scoring function and the hill-climbing method. In the obtained network, adjusting the proportion of the lowest level of the crushing rate nodes to 100 %, the operation strategy under the condition of low broken rate obtained by the network reasoning was: feed rate < 6 kg/s, travel speed < 5 km/h, concave clearance = 10 mm, threshing drum speed < 900 rpm. Three field trials were carried out using this optimized operation strategy, and the measured crushing rates were 0.93 %, 0.95 %, and 1.07 %, respectively, and the average crushing rate was 0.98 %. At the same time, when the optimized strategy was not used, the crushing rates were, respectively, 1.12 %, 1.41 %, and 1.93 %, and the average crushing rate was 1.48 %. The test results prove that the operation strategy based on Bayesian network inference can effectively reduce the crushing rate in the harvesting process.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3