Investigation of Plasmonic Properties of a Rhodium Nanoshell Based Optical Nanomaterial

Author:

JIANG Quan,ZHANG Yue,XIONG Tao,DONG Dandan,WANG Wei,SUN ChengORCID

Abstract

In noble metals, surface plasmons may be induced by incident light, resulting in good plasmonic properties that can be widely utilized. In this work, an optical nanomaterial based on a spherical nanoshell structure consisting of rhodium and dielectric is proposed. The scattering efficiency and electric field are calculated via the finite difference time domain method, by respectively varying the nanoparticle radius, the thickness of the nanoshell, as well as the dielectric material of the core. The results show that under certain conditions in the ultraviolet regime, two plasmonic resonance peaks are observed in the scattering spectrum, correlating to two different electromagnetic modes. It is also demonstrated that the resonance wavelengths and the peak intensities of the rhodium based optical nanomaterial can effectively be tuned by changing the structural parameters. The proposed rhodium-based nanomaterial may be useful in applications of optical devices in the ultraviolet regime.

Publisher

Kaunas University of Technology (KTU)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3