Fabrication and Soft Magnetic Properties of Fe81.3Si4B10P4Cu0.7 Amorphous Powders by Using the Spinning-water Atomization Process

Author:

LI Jiawei,XU Zihao,DAN ZhenhuaORCID,CHANG Hui,MAKINO Akihiro

Abstract

Soft magnetic Fe81.3Si4B10P4Cu0.7 powders have been fabricated by using spinning-water atomization process (SWAP) under the water pressure of 17.5 MPa and gas pressure of 2 MPa. To clarify the amorphous forming ability, thermal stability, and the corresponding soft magnetism, the as-SWAPed powders have been sieved into 6 groups with different powder sizes from 0 – 150 μm. After the analysis of the amorphous and crystalline characteristics, the morphology, and soft magnetic properties of these 6 groups of as-SWAPed powders, it is concluded that the SWAPs with a high cooling rate of 105 K/s can improve the amorphous forming abilities of Fe81.3Si4B10P4Cu0.7 powders up to 53 μm, the saturated magnetic flux density as high as 170 – 173 emu/g and the thermal stabilities higher than 112.8 K. The characteristic parameters of as-SWAPed powders above mentioned are close to those of the counterpart rapid solidified ribbons. The surface oxide layers on as-SWAPed powders mainly consist of Fe2O3, and are 10 nm thick, much thicker than these counterpart ribbons, which might help to weaken the eddy effects accompanying with the slight decrease of the saturated magnetic flux density. Due to the higher cooling rates of SWAPs than gas atomization processes and the better spheroidization of powders for SWAPs than water atomization processes, it is key for NANOMET® family alloys to increase their amorphous forming abilities and better the soft magnetic performances.

Publisher

Kaunas University of Technology (KTU)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3