Simple Ways to Obtain Activation Energy for Hydride Decomposition by Applying Data from a Volumetric Method to the Kissinger Equation

Author:

SONG Myoung YoupORCID,KWAK Young JunORCID

Abstract

Thermal analysis methods - such as TGA, DSC analysis, DTA, and TDS analysis - have been used in many reports to determine the activation energy for hydride decomposition. In our preceding work, we showed that the dehydriding rate of Mg-5Ni samples obeyed the first-order law and the Kissinger equation could thus be used to determine the activation energy. In the present work, we used the Mg-5Ni samples after activation. We obtained Tm at different heating rates by finding the temperature at which the ratio of the desorbed hydrogen quantity Hd change to T change, dHd/dT, was the highest from the desorbed hydrogen quantity Hd versus temperature T curves. Tm’s at different heating rates were also obtained from points of inflection (Φ = dT/dt = 0) in temperature T versus time t curves. The activation energy for hydride decomposition was then calculated by applying Tm’s at different heating rates to the Kissinger equation.

Publisher

Kaunas University of Technology (KTU)

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3