Development of Novel Wear Equation of AA7050/SiC-Steel Interface for High Temperature Application

Author:

VIJUMON Varghese ThayaORCID,JEBEEN MOSES Jacob Thambi EvansORCID,JOSE ALOYSIUS PonifaceORCID,FELIX XAVIER MUTHU Muthu NadarORCID

Abstract

AA7050 aluminium alloy used for the main landing gear link was reinforced with SiC particles utilizing stir casting and uniform dispersion of reinforced particles was analyzed through SEM with EDS mapping. Wear test were performed on pin on disc apparatus by varying the process parameters and experimental runs were designed using response surface methodology. The influence of SiC particles on wear resistance at high temperatures was explored and the findings led to the development of a novel wear equation. The hardness of composites increased due to impediments of dislocation movement, and it declines with an increase in temperature owing to a reduction of Pierls stresses. The formation of a Mechanically Mixed Layer (MML) enhances wear resistance with the inclusion of reinforced particles, and the breakdown of this layer swifts the wear from moderate to severe. The mode of wear was a combination of shearing and abrasive at room temperature, shearing and adhesive until the temperature 200ᵒC, and plastic deformation when the temperature exceeded 200 °C, which was confirmed by worn surface morphology.

Publisher

Kaunas University of Technology (KTU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3