Mechanical and Microstructural Characteristics of Rotary Friction Welded SS316L and Pure Copper with Added MWCNT Nano Additives

Author:

MARK Martin CharlesORCID,SHANMUGAM Satish Kumar,RAJENDRAN Ramadoss

Abstract

This study explores the novel design of geometric rubbing profiles on rotary friction welding for enhanced mechanical clamping in joining dissimilar alloys such as copper and stainless steel 316L. The clamping behavior of rubbing profiles could hold the yielding of the weld joint to a maximum level. An innovative approach to effective mixing of the weldment zone could be achieved through the definition of rubbing profiles. The effective dispersion of dissimilar metallic phases could be governed by the geometrical profile in achieving the intermetallic SS-Cu phase. Variations were made in welding parameters like tool rotational speed, upset pressure, upset time, friction pressure, and friction time to find the appropriate process for the four different rubbing profiles, namely helical fluke, plus, cylindrical, and flat to achieve a reduction in micro and macro-structural defects with strong weld nugget. Results show that helical fluke rubbing profiles were seen to have explicit values like ultimate tensile strength of 217 MPa (upset pressure), elongation of 9.8 % (upset pressure), and average hardness of 125 HV (friction pressure) at the weld nugget. Microstructural characteristics prove that the formation of IMCs through grain size reduction such as cementite increases the Vickers hardness of the weldment.

Publisher

Kaunas University of Technology (KTU)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3