Crack Evolution and Computational Model Based Thermal Stress Evaluation of Laser Cladding Based on HVOF Sprayed WC/Co Deposits

Author:

ZHANG Chao Yang,JEAN Ming Der

Abstract

A comprehensive experimental study on the high-velocity oxygen-fuel (HVOF) sprayed tungsten carbide/cobalt (WC/Co) deposits using laser cladding was conducted. A response surface methodology based on a central composite design was used to analyze, predict and optimize the WC/Co deposits of the laser-based HVOF sprayed coatings. The morphologies and microstructures of the laser clads were characterized using optical microscope, scanning electron microscope and X-ray diffraction techniques. The crack behavior and residual stress-based fractures were explored. In addition, the relationships between the residual stress of the laser clad and three factors: laser power, scanning speed and stand-off distance were examined. Further, optimization of the control factors: laser power, scanning speed and stand-off distance to minimize the residual stress was attained using a response surface methodology. The resulting lower residual stress has decreased the fracture crack activities and did not easily induce delamination in the laser clads. Findings from this study would greatly contribute to optimizing the experiments and achieve an enhanced structural evolution in the protective coating of traditional handicraft products by laser cladding.

Publisher

Kaunas University of Technology (KTU)

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3