Data Cube Clustering with Improved DBSCAN based on Fuzzy Logic and Genetic Algorithm

Author:

Hosseini Rad Mina,Abdolrazzagh-Nezhad Majid

Abstract

Multi-dimensional data, such as data cube, are constructed based on aggregating data in data warehouses and it requires to analyze with high flexibility. Also, clustering, which is an unsupervised pattern recognition analysis, has significant challenges to perform on data cube. In this paper, two new drafts of density-based clustering methods are designed to recognize unsupervised patterns of the data cube. In the first draft, DBSCAN clustering is hybridized by genetic algorithm and called the Improved DBSCAN (IDBSCAN). The motivation of designing the IDBSCAN optimizes the DBSCAN’s parameters by a meta-heuristic algorithm such as GA. The second draft, which is called the Soft Improved DBSCAN (SIDBSCAN), is designed based on fuzzy tuning parameters of the GA in the IDBSCAN. The fuzzy tuning parameters are performed with two fuzzy groups rules of Mamdani (SIDBSCAN-Mamdani) and Sugeno (SIDBSCAN-Sugeno), separately. These ideas are proposed to present efficient and flexible unsupervised analysis for a data cube by utilizing a meta-heuristic algorithm to optimize DBSCAN’s parameters and increasing the efficiency of the idea by applying dynamic tuning parameters of the algorithm. To evaluate the efficiency, the SIDBSCAN-Mamdani and the SIDBSCAN-Sugeno are compared with the IDBSCAN and the DBSCAN. The experimental results, consisted of 20 times running, indicate that the proposed ideas achieved to their targets.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3