UPSNet: Universal Point Cloud Sampling Network Without Knowing Downstream Tasks

Author:

Tian Fujing,Song Yang,Jiang Zhidi,Tao Wenxu,Jiang Gangyi

Abstract

With the development of three-dimensional sensing technology, the data volume of point cloud grows rapidly. Therefore, point cloud is usually down-sampled in advance so as to save memory space and reduce the computational complexity for its downstream processing tasks such as classification, segmentation, reconstruction in learning based point cloud processing. Obviously, the sampled point clouds should be well representative and maintain the geometric structure of the original point clouds so that the downstream tasks can achieve satisfied performance based on the point clouds sampled from the original ones. Traditional point cloud sampling methods such as farthest point sampling and random sampling mainly heuristically select a subset of the original point cloud. However, they do not make full use of high-level semantic representation of point clouds, are sensitive to outliers. Some of other sampling methods are task oriented. In this paper, a Universal Point cloud Sampling Network without knowing downstream tasks (denoted as UPSNet) is proposed. It consists of three modules. The importance learning module is responsible for learning the mutual information between the points of input point cloud and calculating a group of variational importance probabilities to represent the importance of each point in the input point cloud, based on which a mask is designed to discard the points with lower importance so that the number of remaining points is controlled. Then, the regional learning module learns from the input point cloud to get the high dimensional space embedding of each region, and the global feature of each region are obtained by weighting the high dimensional space embedding with the variational importance probability. Finally, through the coordinate regression module, the global feature and the high dimensional space embedding of each region are cascaded for learning to obtain the sampled point cloud. A series of experiments are implemented in which the point cloud classification, segmentation, reconstruction and retrieval are performed on the reconstructed point clouds sampled with different point cloud sampling methods. The experimental results show that the proposed UPSNet can provide more reasonable sampling result of the input point cloud for the downstream tasks of classification, segmentation, reconstruction and retrieval, and is superior to the existing sampling methods without knowing the downstream tasks. The proposed UPSNet is not oriented to specific downstream tasks, so it has wide applicability.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3