A Neutrosophic Set Approach on Chest X-rays for Automatic Lung Infection Detection

Author:

Sofia Jennifer J.,Sree Sharmila T.

Abstract

COVID cases and its variants is noted enormously in the past three years. In many medical cases, lung infections such as viral pneumonia, bacterial pneumonia have been initially interpreted as COVID-19. Hence, the proposed work is concentrating on differentiating these lung infection types. This work focuses on using neutrosophic approach of classifying into True (T), False (F) and Indeterminacy (I) set membership to reduce the fuzziness and retain more significant information for feature extraction of the opacity to differentiate the types of lung infections. Initially, the images are preprocessed by alpha-mean and beta-enhancement operation to reduce the indeterminacy and enhancing the image components as the range of lung opacity levels to determine the types. Then, these neutrosophic set enhanced images are fed to various deep learning models like ResNet-50, VGG-16 and XGBoost for classification. Experiments are conducted on ActualMed COVID-19 Chest X-ray and COVID-19 radiography dataset and a comparative analysis on several domain set of images such as the original image, neutrosophic domain (T, I, F) and enhanced neutrosophic domain (alpha, beta) are trained and tested through transfer learning by tuning the various validation parameters. On experimental analysis, an enhanced neutrosophic image achieves a better accuracy of 97.33% among the other domain sets.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3