A New Range-based Breast Cancer Prediction Model Using the Bayes' Theorem and Ensemble Learning

Author:

Khozama Sam,Mayya Ali M.ORCID

Abstract

Breast cancer prediction is essential for preventing and treating cancer. In this research, a novel breast cancer prediction model is introduced. In addition, this research aims to provide a range-based cancer score instead of binary classification results (yes or no). The Breast Cancer Surveillance Consortium dataset (BCSC) dataset is used and modified by applying a proposed probabilistic model to achieve the range-based cancer score. The suggested model analyses a sub dataset of the whole BCSC dataset, including 67632 records and 13 risk factors. Three types of statistics are acquired (general cancer and non-cancer probabilities, previous medical knowledge, and the likelihood of each risk factor given all prediction classes). The model also uses the weighting methodology to achieve the best fusion of the BCSC's risk factors. The computation of the final prediction score is done using the post probability of the weighted combination of risk factors and the three statistics acquired from the probabilistic model. This final prediction is added to the BCSC dataset, and the new version of the BCSC dataset is used to train an ensemble model consisting of 30 learners. The experiments are applied using the sub and the whole datasets (including 317880 medical records). The results indicate that the new range-based model is accurate and robust with an accuracy of 91.33%, a false rejection rate of 1.12%, and an AUC of 0.9795. The new version of the BCSC dataset can be used for further research and analysis.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An optimal fast fractal method for breast masses diagnosis using machine learning;Medical Engineering & Physics;2024-10

2. Medical-informed machine learning: integrating prior knowledge into medical decision systems;BMC Medical Informatics and Decision Making;2024-06-28

3. A Comparative Analysis of Selected Machine Learning Classifiers for Early Detection of Breast Cancer;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

4. A novel breast cancer detection system using SDM-WHO-RNN classifier with LS-CED segmentation;Expert Systems with Applications;2024-03

5. Breast cancer detection and classification using metaheuristic optimized ensemble extreme learning machine;International Journal of Information Technology;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3