Visibility Restoration Using Generalized Haze-Lines

Author:

Riaz Samia,Waqas Anwar Muhammad,Riaz Irfan,Nam Yunyoung,Khan Muhammad Attique Khan

Abstract

Haze reduces the perceived scene radiance and limits the visibility in outdoor images. The visibility is different for each scene point and is proportional to haze thickness, and distance from the camera. Transmission map represents percentage of scene radiance captured by the camera and is unknown for every pixel. This work generalizes the concept of haze-lines, and presents an algorithm to estimate transmission map and restore scene radiance accurately. The proposed technique depends on the perception that the colors of haze-free natural images can be well approximated by a set of distinct colors and their shades (natural color-palette) that can be learned beforehand. In presence of haze, the pixels forming a cluster in haze-free image, make a line (haze-line) in RGB color space. The two endpoints of this haze-line are the haze-free color and the airlight. We propose that these haze-lines can be generalized, with one end as learned color-palette of natural images and the other as airlight. Hence the scene radiance end can be made independent of underlying image. The algorithm recovers the transmission map, by determining membership of each pixel to a given haze-line and finding how far-off it is from its learned color-palette. The algorithm is linear to the size of image, and requires just a collection of haze-free natural images for training. The results obtained on a diverse range of images demonstrate the efficiency of proposed algorithm.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3