Saliency Detection Algorithm for Foggy Images Based on Deep Learning

Author:

Zhang Leihong,Ji Zhaoyuan,Xu Runchu,Zhang Dawei

Abstract

The detection of salient objects in foggy scenes is an important research component in many practical applications such as action recognition, target tracking and pedestrian re-identification. To facilitate saliency detection in foggy scenes, this paper explores two issues. The construction of dataset for foggy weather conditions and implementation scheme for foggy weather saliency detection. Firstly, a foggy sky image synthesis method is designed based on the atmospheric scattering model, and a saliency detection dataset applicable to foggy sky is constructed. Secondly, we compare the current classification networks and adopt resnet50, which has the highest classification accuracy, as the backbone network of the classification module, and classify the foggy sky images into three levels, namely fogless, light fog and dense fog, according to different concentrations. Then, Residual Refinement Network (R2Net) was selected to train and test the classified images. Horizontal and vertical flipping and image cropping were used to enhance the training set to relieve over-fitting. The accuracy of the network model was improved by using Adam as the optimizer. Experimental results show that for the detection of fogless images, our method is almost on par with state-of-the-art, and performs well for both light and dense fog images. Our method has good adaptability, accuracy and robustness.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3