Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm

Author:

Nivedha S.,Shankar S.

Abstract

Melanoma, a rapidly spreading and perilous type of skin cancer, is the focus of this study, presenting a reliable technique for its detection. It is one of the most prevalent types of cancer that might be challenging for medical professionals to diagnose. Artificial intelligence can improve diagnostic accuracy when utilized in conjunction with the expertise of medical specialists. An innovative computer-aided method for the diagnosis of skin cancer has been introduced in the current study. The construction of the proposed method uses the African Gorilla Troops Optimizer (AGTO) Algorithm, a recently introduced meta-heuristic optimization algorithm, and deep learning models such as Faster Region Convolutional Neural Networks.  To reduce the complexity of the analytic process, valuable features are chosen using the AGTO method, and further classification is implemented using Faster R-CNN. The proposed model is applied to the ISIC-2020 skin cancer dataset. When the final performance results from the proposed model are compared to those from four existing works, the findings show that the proposed system outperforms the existing models with an accuracy of 98.55%.

Publisher

Kaunas University of Technology (KTU)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3