YOLOv5s-MEE: A YOLOv5-based Algorithm for Abnormal Behavior Detection in Central Control Room

Author:

Yuan PingORCID,Fan ChunlingORCID,Zhang ChuntangORCID

Abstract

Aiming to quickly and accurately detect abnormal behaviors of workers in central control rooms, such as playing mobile phone and sleeping, an abnormal behavior detection algorithm based on improved YOLOv5 is proposed. The technique uses SRGAN to reconstruct the input image to improve the resolution and enhance the detailed information. Then, the MnasNet is introduced to replace the backbone feature extraction network of the original YOLOv5, which could achieve the lightweight of the model. Moreover, the detection accuracy of the whole network is enhanced by adding the ECA-Net attention mechanism into the feature fusion network structure of YOLOv5 and modifying the loss function as EIOU. The experimental results in the custom dataset show that compared with the original YOLOv5 algorithm, the algorithm proposed in this paper improves thedetection speed to 75.50 frames/s under the condition of high detection accuracy, which meets the requirements of real-time detection. Meanwhile, compared with other mainstream behavior detection algorithms, this algorithm also shows better detection performance.

Publisher

Kaunas University of Technology (KTU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3