Author:
Zahedi Fard Seyed Yahya,Sohrabi Mohammad Karim,Ghods Vahid
Abstract
With the expansion and enhancement of cloud data centers in recent years, increasing the energy consumptionand the costs of the users have become the major concerns in the cloud research area. Service quality parametersshould be guaranteed to meet the demands of the users of the cloud, to support cloud service providers,and to reduce the energy consumption of the data centers. Therefore, the data center's resources must be managedefficiently to improve energy utilization. Using the virtual machine (VM) consolidation technique is animportant approach to enhance energy utilization in cloud computing. Since users generally do not use all thepower of a VM, the VM consolidation technique on the physical server improves the energy consumption andresource efficiency of the physical server, and thus improves the quality of service (QoS). In this article, a serverthreshold prediction method is proposed that focuses on the server overload and server underload detectionto improve server utilization and to reduce the number of VM migrations, which consequently improves theVM's QoS. Since the VM integration problem is very complex, the exponential smoothing technique is utilizedfor predicting server utilization. The results of the experiments show that the proposed method goes beyondexisting methods in terms of power efficiency and the number of VM migrations.
Publisher
Kaunas University of Technology (KTU)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献