Learning Stabilization Control of Quadrotor in Near-Ground Setting Using Reinforcement Learning

Author:

Briliauskas Mantas

Abstract

With the development of intelligent systems, the popularity of using micro aerial vehicles (MAV) increases significantly in the fields of rescue, photography, security, agriculture, and warfare. New modern solutions of machine learning like ChatGPT that are fine-tuned using reinforcement learning (RL) provides evidence of new trends in seeking general artificial intelligence. RL has already been proven to work as a flight controller for MAV performing better than Proportional Integral Derivative (PID)-based solutions. However, using negative Euclidean distance to the target point as the reward function is sufficient in obstacle-free spaces, e.g. in the air, but fails in special cases, e.g. when training near the ground. In this work, we address this issue by proposing a new reward function with early termination. It not only allows to successfully train Proximal Policy Optimization (PPO) algorithm to stabilize the quadrotor in the near-ground setting, but also achieves lower Euclidean distance error compared to the baseline setup.

Publisher

Kaunas University of Technology (KTU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3